Physics 523, Quantum Field Theory II

Homework 9
Due Wednesday, $17^{\text {th }}$ March 2004

Jacob Lewis Bourjaily

β-Functions in Pseudo-Scalar Yukawa Theory

Let us consider the massless pseudo-scalar Yukawa theory governed by the renormalized Lagrangian,

$$
\begin{aligned}
\mathscr{L} & =\frac{1}{2}\left(\partial_{\mu} \phi\right)^{2}+\bar{\psi} i \not \partial \psi-i g \bar{\psi} \gamma^{5} \psi \phi-\frac{\lambda}{4!} \phi^{4} \\
& +\frac{1}{2} \delta_{\phi}\left(\partial_{\mu} \phi\right)^{2} \bar{\psi} i \delta_{\psi} \not \partial \psi-i g \delta_{g} \bar{\psi} \gamma^{5} \psi \phi-\frac{\delta_{\lambda}}{4!} \phi^{4} .
\end{aligned}
$$

In homework 8, we calculated the divergent parts of the renormalization counterterms $\delta_{\phi}, \delta_{\psi}, \delta_{g}$, and δ_{λ} to 1 -loop order. These were shown to be

$$
\begin{array}{ll}
\delta_{\phi}=-\frac{g^{2}}{8 \pi^{2}} \log \frac{\Lambda^{2}}{M^{2}}, & \delta_{\psi}=-\frac{g^{2}}{32 \pi^{2}} \log \frac{\Lambda^{2}}{M^{2}} \\
\delta_{\lambda}=\left(\frac{3 \lambda^{2}}{32 \pi^{2}}-\frac{3 g^{4}}{2 \pi^{2}}\right) \log \frac{\Lambda^{2}}{M^{2}}, & \delta_{g}=\frac{g^{2}}{16 \pi^{2}} \log \frac{\Lambda^{2}}{M^{2}}
\end{array}
$$

Using the definitions of B_{i} and A_{i} in Peskin and Schroeder, these imply that

$$
\begin{array}{rlrl}
A_{\phi} & =-\gamma_{\phi}=-\frac{g^{2}}{8 \pi^{2}}, & A_{\psi} & =-\gamma_{\psi}=-\frac{g^{2}}{32 \pi^{2}} \\
B_{\lambda} & =\frac{3 g^{4}}{2 \pi^{2}}-\frac{3 \lambda^{2}}{32 \pi^{2}} & B_{g}=-\frac{g^{2}}{16 \pi^{2}} .
\end{array}
$$

Therefore, we see that

$$
\begin{aligned}
& \beta_{g}=-2 g B_{g}-2 g A_{\psi}-g A_{\phi}=2 g \frac{g^{2}}{16 \pi^{2}}+2 g \frac{g^{2}}{32 \pi^{2}}+g \frac{g^{2}}{8 \pi^{2}}=\frac{5 g^{3}}{16 \pi^{2}} \\
& \beta_{\lambda}=-2 B_{\lambda}-4 \lambda A_{\phi}=2\left(\frac{3 \lambda^{2}}{32 \pi^{2}}-\frac{3 g^{4}}{2 \pi^{2}}\right)+4 \lambda \frac{g^{2}}{8 \pi^{2}}=\frac{3 \lambda^{2}+8 \lambda g^{2}-48 g^{4}}{16 \pi^{2}}
\end{aligned}
$$

While it was supposedly unnecessary, the running couplings were computed to be ${ }^{1}$,

$$
\begin{aligned}
& \bar{g}(p)=\sqrt{\frac{16 \pi^{2}}{1-10 \log p / M}} ; \\
& \bar{\lambda}(p)=\bar{\lambda}=\frac{\bar{g}^{2}}{3}\left(1+\sqrt{145} \frac{-\frac{4 \sqrt{145}+149}{141}+\bar{g}^{2 \sqrt{145} / 5}}{-\frac{4 \sqrt{145}+149}{141}-\bar{g}^{2 \sqrt{145} / 5}}\right)
\end{aligned}
$$

Notice that both \bar{g} and $\bar{\lambda}$ generally become weaker at large distances because for typical values of g, λ we see that β_{g} and β_{λ} are both positive. However, if $\lambda \ll g$ then β_{λ} will be negative and so $\bar{\lambda}$ will grow stronger at larger distances. Near small values of g and λ the theory shows interesting interplay between g and λ. Also interesting is the characteristic Landau pole in $\bar{\lambda}$ suggesting that we should not trust this theory at too large a scale.

Below is a graph of \bar{g} versus $-\bar{\lambda}$ indicating the direction of Renormalization Group flow as the interaction distance grows larger.

Figure 1. Renormalization Group Flow as a funciton of scale. Arrow indicates flow in the direction of larger distances. For this plot, M was taken to be 10^{4}.

[^0]
Minimal Subtraction

Let us define the β-function as it appears in dimensional regularization as

$$
\beta(\lambda, \epsilon)=\left.M \frac{d}{d M} \lambda\right|_{\lambda_{0}, \epsilon}
$$

where it is understood that $\beta(\lambda)=\lim _{\epsilon \rightarrow 0} \beta(\lambda, \epsilon)$. We notice that the bare coupling is given by $\lambda_{0}=$ $M^{\epsilon} Z_{\lambda}(\lambda, \epsilon) \lambda$ where Z_{λ} is given by an expansion series in ϵ,

$$
Z_{\lambda}(\lambda, \epsilon)=1+\sum_{\nu=1} \frac{a_{\nu}(\lambda)}{\epsilon^{\nu}} .
$$

We are to demonstrate the following.
a) Let us show that Z_{λ} satisfies the identity $(\beta(\lambda, \epsilon)+\epsilon \lambda) Z_{\lambda}+\beta(\lambda \epsilon) \lambda \frac{d Z_{\lambda}}{d \lambda}=0$.
proof: Noting the general properties of differentiation from elementary analysis, we will proceed by direct computation.

$$
\begin{aligned}
&(\beta(\lambda, \epsilon)+\epsilon \lambda) Z_{\lambda}+\beta(\lambda, \epsilon) \lambda \frac{d Z_{\lambda}}{d \lambda}=\beta(\lambda, \epsilon) Z_{\lambda}+\epsilon \lambda Z_{\lambda}+\beta(\lambda, \epsilon) \frac{d\left(Z_{\lambda} \lambda\right)}{d \lambda}-\beta(\lambda, \epsilon) Z_{\lambda}, \\
&=\epsilon \lambda Z_{\lambda}+\left.M \frac{d \lambda}{d M}\right|_{\lambda_{0}, \epsilon} \frac{d\left(\lambda_{0} M^{-\epsilon}\right)}{d \lambda}, \\
&=\epsilon \lambda Z_{\lambda}-\epsilon M \lambda_{0} M^{-\epsilon-1}, \\
&=\epsilon \lambda Z_{\lambda}-\epsilon M^{1+\epsilon} M^{-\epsilon-1} Z_{\lambda} \lambda, \\
&=0 . \\
& \therefore(\beta(\lambda, \epsilon)+\epsilon \lambda) Z_{\lambda}+\beta(\lambda \epsilon) \lambda \frac{d Z_{\lambda}}{d \lambda}=0 .
\end{aligned}
$$

b) Let us show that $\beta(\lambda, \epsilon)=-\epsilon \lambda+\beta(\lambda)$.
proof: We have demonstrated in part (a) above that $(\beta(\lambda, \epsilon)+\epsilon \lambda) Z_{\lambda}+\beta(\lambda \epsilon) \lambda \frac{d Z_{\lambda}}{d \lambda}=0$. Dividing this equation by Z_{λ} and rearranging terms and expanding in Z_{λ}, we obtain

$$
\begin{aligned}
\beta(\lambda, \epsilon)+\epsilon \lambda & =-\beta(\lambda, \epsilon) \frac{\lambda}{Z_{\lambda}} \frac{d Z_{\lambda}}{d \lambda} \\
& =-\beta(\lambda, \epsilon) \frac{\lambda}{Z_{\lambda}}\left(\frac{1}{\epsilon} \frac{d a_{1}}{d \lambda}+\frac{1}{\epsilon^{2}} \frac{d a_{2}}{d \lambda}+\cdots\right), \\
& =-\beta(\lambda, \epsilon) \lambda\left(\frac{1}{\epsilon} \frac{d a_{1}}{d \lambda}+\frac{1}{\epsilon^{2}} \frac{d a_{2}}{d \lambda}+\cdots\right)\left(1-\frac{a_{1}}{\epsilon}+\cdots\right) .
\end{aligned}
$$

Now, we know that $\beta(\lambda, \epsilon)$ must be regular in ϵ as $\epsilon \rightarrow 0$ and so we may expand it as a (terminating) $)^{2}$ power series $\beta(\lambda, \epsilon)=\beta_{0}+\beta_{1} \epsilon+\beta_{2} \epsilon^{2}+\cdots+\beta_{n} \epsilon^{n}$. We notice that $\beta(\lambda)=\beta_{0}$ in this notation. Let us consider the limit of $\epsilon \rightarrow \infty$.
For any $n>0$, we see that the order of the polynomial on the left hand side has degree n whereas the polynomial on the left hand side has degree $n-1$ because as $\epsilon \rightarrow \infty$, the equation becomes $\beta_{n} \epsilon^{n}=-\beta_{n} \epsilon^{n} \lambda \frac{1}{\epsilon} \frac{d a_{1}}{d \lambda}$. But this is a contradiction.
Therefore, both the right and left hand sides must have degree less than or equal to 0 .
Furthermore, because the left hand side is $\beta(\lambda, \epsilon)+\epsilon \lambda=\beta_{0}+\beta_{1} \epsilon+\epsilon \lambda$ must have degree zero, we see that $\beta_{1}=-\epsilon$.
So, expanding $\beta(\lambda, \epsilon)$ as a power series of ϵ, we obtain,

$$
\therefore \beta(\lambda, \epsilon)=-\epsilon \lambda+\beta(\lambda) .
$$

[^1]c.i) Let us show that $\beta(\lambda)=\lambda^{2} \frac{d a_{1}}{d \lambda}$.
proof: By rewriting the identity obtained from part (a) above and expanding in Z_{λ} we see that
\[

$$
\begin{aligned}
(\beta(\lambda, \epsilon)+\epsilon \lambda) Z_{\lambda} & =-\beta(\lambda, \epsilon) \lambda \frac{d Z_{\lambda}}{d \lambda} \\
(\beta(\lambda, \epsilon)+\epsilon \lambda)\left(1+\frac{a_{1}}{\epsilon}+\cdots\right) & =-\beta(\lambda, \epsilon) \lambda\left(\frac{1}{\epsilon} \frac{d a_{1}}{d \lambda}+\cdots\right) .
\end{aligned}
$$
\]

We see that because there is no term on the right hand side of order ϵ^{0}, it must be that $\beta(\lambda, \epsilon)+\lambda a_{1}=0$ which implies that $\beta(\lambda, \epsilon)=-\lambda a_{1}$. Furthermore, by equating the coefficients of $\frac{1}{\epsilon^{n}}$, we have in general that $\beta(\lambda, \epsilon) a_{n}+\lambda a_{n+1}=-\beta(\lambda, \epsilon) \lambda \frac{d a_{n}}{d \lambda}$. By rearranging terms and using noticing the chain rule of differentiation, we see that this implies that

$$
\lambda a_{n+1}=-\beta(\lambda, \epsilon)\left(\lambda \frac{d a_{n}}{d \lambda}+a_{n}\right)=-\beta(\lambda, \epsilon) \frac{d\left(\lambda a_{n}\right)}{d \lambda} .
$$

This fact will be important to the proof immediately below.
Now, by the result of part (b) above, we know that

$$
\begin{aligned}
\beta(\lambda) Z_{\lambda} & =(\beta(\lambda, \epsilon)+\epsilon \lambda) Z_{\lambda}
\end{aligned}=-\beta(\lambda, \epsilon) \lambda \frac{d Z_{\lambda}}{d \lambda}, ~=(\beta(\lambda, \epsilon)+\epsilon \lambda) Z_{\lambda}=-\beta(\lambda, \epsilon) \lambda\left(\frac{1}{\epsilon} \frac{d a_{1}}{d \lambda}+\cdots\right) . ~ .
$$

Equating the coefficients of terms of order $\frac{1}{\epsilon}$ on the far left and right sides, we see that

$$
\beta(\lambda) a_{1}=-\beta(\lambda, \epsilon) \lambda \frac{d a_{1}}{d \lambda}
$$

Now, using our result from before that $\beta(\lambda, \epsilon)=-\lambda a_{1}$, we see directly that

$$
\therefore \beta(\lambda)=\lambda^{2} \frac{d a_{1}}{d \lambda}
$$

c.ii) Let us show that $\beta(\lambda) \frac{d\left(\lambda a_{\nu}\right)}{d \lambda}=\lambda^{2} \frac{d a_{\nu+1}}{d \lambda}$.
proof: By our result in part (b) above, we have that

$$
\begin{aligned}
\beta(\lambda) & =(\beta(\lambda, \epsilon)+\epsilon \lambda), \\
\therefore \beta(\lambda) \frac{d\left(Z_{\lambda} \lambda\right)}{d \lambda} & =(\beta(\lambda, \epsilon)+\epsilon \lambda) \frac{d\left(Z_{\lambda} \lambda\right)}{d \lambda} \\
\beta(\lambda)\left(1+\frac{1}{\epsilon} \frac{d\left(\lambda a_{1}\right)}{d \lambda}+\cdots\right) & =(\beta(\lambda, \epsilon)+\epsilon \lambda)\left(1+\frac{1}{\epsilon} \frac{d\left(\lambda a_{1}\right)}{d \lambda}+\cdots\right) .
\end{aligned}
$$

Equating the coefficients of $\frac{1}{\epsilon^{\nu}}$ on both sides, we see that by using the identities shown above,

$$
\begin{aligned}
\beta(\lambda) \frac{d\left(\lambda a_{\nu}\right)}{d \lambda} & =\beta(\lambda, \epsilon) \frac{d\left(\lambda a_{\nu}\right)}{d \lambda}+\lambda \frac{d\left(\lambda a_{\nu+1}\right)}{d \lambda} \\
& =\beta(\lambda, \epsilon) \frac{d\left(\lambda a_{\nu}\right)}{d \lambda}+\lambda^{2} \frac{d a_{\nu+1}}{d \lambda}+\lambda a_{\nu+1} \\
& =\beta(\lambda, \epsilon) \frac{d\left(\lambda a_{\nu}\right)}{d \lambda}+\lambda^{2} \frac{d a_{\nu+1}}{d \lambda}-\beta(\lambda, \epsilon) \frac{d\left(\lambda a_{\nu}\right)}{d \lambda} \\
& =\lambda^{2} \frac{d a_{\nu+1}}{d \lambda}
\end{aligned}
$$

So we see in general that

$$
\therefore \beta(\lambda) \frac{d\left(\lambda a_{\nu}\right)}{d \lambda}=\lambda^{2} \frac{d a_{\nu+1}}{d \lambda} .
$$

In the minimal subtraction scheme, we define the mass renormalization by $m_{0}^{2}=m^{2} Z_{m}$ where

$$
Z_{m}=1+\sum_{\nu=1} \frac{b_{\nu}}{\epsilon^{\nu}}
$$

Similarly, we will define the associated β-function $\beta_{m}(\lambda)=m \gamma_{m}(\lambda)$ which is given by

$$
\beta_{m}(\lambda)=\left.M \frac{d m}{d M}\right|_{m_{0}, \epsilon}
$$

d.i) Let us show that $\gamma_{m}(\lambda)=\frac{\lambda}{2} \frac{d b_{1}}{d \lambda}$.
proof: Because m_{0}^{2} is a constant, we know that $\frac{d m_{0}^{2}}{d M}=0$. Therefore, writing $m_{0}^{2}=m^{2} Z_{m}$ we see that this implies

$$
\begin{aligned}
\frac{d m_{0}^{2}}{d M}=0 & =2 Z_{m} m \frac{d m}{d M}+m^{2} \frac{d Z_{m}}{d M} \\
& =2 Z_{m} m \frac{\beta_{m}(\lambda)}{M}+m^{2} \frac{d Z_{m}}{d \lambda} \frac{d \lambda}{d M}=0 ; \\
\therefore 0 & =2 Z_{m} \beta_{m}(\lambda)+m M \frac{d \lambda}{d M} \frac{d Z_{m}}{d \lambda} \\
\therefore 2 \beta_{m}(\lambda) Z_{m} & =-m \beta(\lambda, \epsilon) \frac{d Z_{m}}{d \lambda}, \\
2 \beta_{m}(\lambda)\left(1+\frac{b_{1}}{\epsilon}+\cdots\right) & =-m \beta(\lambda, \epsilon)\left(\frac{1}{\epsilon} \frac{d b_{1}}{d \lambda}+\cdots\right), \\
2 \beta_{m}(\lambda)\left(1+\frac{b_{1}}{\epsilon}+\cdots\right) & =-m(\beta(\lambda)-\epsilon \lambda)\left(\frac{1}{\epsilon} \frac{d b_{1}}{d \lambda}+\cdots\right),
\end{aligned}
$$

We see that the coefficient of the ϵ^{0} term on the left hand side is $2 \beta_{m}(\lambda)$ and on the right hand side it is $m \lambda \frac{d b_{1}}{d \lambda}$. Therefore, because these terms must be equal, we see that

$$
\begin{aligned}
& \beta_{m}(\lambda)=m \frac{\lambda}{2} \frac{d b_{1}}{d \lambda} \\
& \therefore \gamma_{m}(\lambda)=\frac{\lambda}{2} \frac{d b_{1}}{d \lambda}
\end{aligned}
$$

d.ii) Let us prove that $\lambda \frac{d b_{\nu+1}}{d \lambda}=2 \gamma_{m}(\lambda) b_{\nu}+\beta(\lambda) \frac{d b_{\nu}}{d \lambda}$.
proof: Continuing our work from part (d.i) above, we have that

$$
2 \beta_{m}(\lambda)\left(1+\frac{b_{1}}{\epsilon}+\cdots\right)=-m(\beta(\lambda)-\epsilon \lambda)\left(\frac{1}{\epsilon} \frac{d b_{1}}{d \lambda}+\cdots\right)
$$

It must be that the coefficients of $\frac{1}{\epsilon^{\nu}}$ are equal on both sides. Therefore, we see that

$$
\begin{aligned}
2 \beta_{m}(\lambda) b_{\nu} & =-m \beta(\lambda) \frac{d b_{\nu}}{d \lambda}+m \lambda \frac{d b_{\nu+1}}{d \lambda} \\
2 m \gamma_{m}(\lambda) b_{\nu} & =-m \beta(\lambda) \frac{d b_{\nu}}{d \lambda}+m \lambda \frac{d b_{\nu+1}}{d \lambda} \\
\therefore 2 \gamma_{m}(\lambda) b_{\nu} & =-\beta(\lambda) \frac{d b_{\nu}}{d \lambda}+\lambda \frac{d b_{\nu+1}}{d \lambda}
\end{aligned}
$$

Rearranging terms, we see that

$$
\therefore \lambda \frac{d b_{\nu+1}}{d \lambda}=2 \gamma_{m}(\lambda) b_{\nu}+\beta(\lambda) \frac{d b_{\nu}}{d \lambda}
$$

Appendix

Calculation of the Running Couplings \bar{g} and $\bar{\lambda}$

Let us now solve for the flow of the coupling constants g, λ. We have in general that solutions to the Callan-Symanzik equation will satisfy

$$
\frac{d \bar{g}}{d \log p / M}=\beta_{g}=\frac{5 g^{3}}{16 \pi^{2}}+\mathcal{O}\left(g^{5}\right)
$$

This is an ordinary differential equation. We see that

$$
-\frac{1}{2} \frac{1}{\bar{g}^{2}}=\frac{5}{16 \pi^{2}} \log p / M+C
$$

and so

$$
\therefore \bar{g}^{2}(p)=-\frac{8 \pi^{2}}{5 \log p / M+C}
$$

The constant C is found so that $g(p=M)=1 .^{3}$ This yields $C=-1 / 2$.
To find the flow of λ, however, it will be convenient to introduce a new variable $\eta \equiv \lambda / g^{2}$. We must then solve the equation

$$
\frac{d \bar{\eta}}{d \log p / M}=\frac{\beta_{\lambda}}{g^{2}}-2 \frac{\lambda \beta_{g}}{g^{3}}=\frac{\left(3 \eta^{2}-2 \eta-48\right) g^{2}}{16 \pi^{2}}+\mathcal{O}\left(g^{4}\right)
$$

This is again a simple ordinary differential equation. We see that this implies

$$
\int \frac{d \bar{\eta}}{3 \eta^{2}-2 \eta-48}=\int \frac{g^{2}}{16 \pi^{2}} d \log p / M
$$

Note that from our work above, $\frac{g^{2}}{16 \pi^{2}} d \log p / M=\frac{g^{2}}{16 \pi^{2}} d\left(-\frac{8 \pi^{2}}{5 g^{2}}\right)=\frac{1}{5 g} d g$. Therefore,

$$
\int \frac{d \bar{\eta}}{3 \eta^{2}-2 \eta-48}=\int \frac{1}{5 g} d g
$$

And so,

$$
\log \left(\frac{3 \bar{\eta}-\sqrt{145}-1}{3 \bar{\eta}+\sqrt{145}-1}\right)=\frac{2 \sqrt{145}}{5} \log g+C
$$

Solving this equation in terms of η, we see that we have

$$
\begin{aligned}
\bar{\eta}= & \frac{C g^{2 \sqrt{145} / 5}(\sqrt{145}-1)+\sqrt{145}+1}{3-3 C g^{2 \sqrt{145} / 5}} \\
= & \frac{1-C g^{2 \sqrt{145} / 5}}{3-3 C g^{2 \sqrt{145} / 5}}+\frac{C g^{2 \sqrt{145} / 5} \sqrt{145}+\sqrt{145}}{3-3 C g^{2 \sqrt{145} / 5}} \\
= & \frac{1}{3}\left(1+\sqrt{145} \frac{C+g^{2 \sqrt{145} / 5}}{C-g^{2 \sqrt{145} / 5}}\right) \\
& \therefore \bar{\lambda}=\frac{g^{2}}{3}\left(1+\sqrt{145} \frac{C+g^{2 \sqrt{145} / 5}}{C-g^{2 \sqrt{145} / 5}}\right)
\end{aligned}
$$

As before, the constant term C is found by requiring that $\bar{\lambda}(p=M)=1$. The constant is then $C=-\frac{4 \sqrt{145}+149}{141}$.

[^2]
[^0]: ${ }^{1}$ See appendix.

[^1]: ${ }^{2}$ Professor Larsen does note believe this to be necessary. However, we have been unable to demonstrate the required identity without assuming a terminating power series.

[^2]: ${ }^{3}$ It can be argued that this is a poor choice of C because it requires the reference scale to be non-perturbative. Nevertheless, it is not a free parameter.

