Paysics 523, QUANTUM FIELD THEORY II
Homework 9
Due Wednesday, 17*" March 2004

JAcoB LEwIS BOURJAILY

G-Functions in Pseudo-Scalar Yukawa Theory
Let us consider the massless pseudo-scalar Yukawa theory governed by the renormalized Lagrangian,
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In homework 8, we calculated the divergent parts of the renormalization counterterms dg, dy, dg, and
0 to 1-loop order. These were shown to be
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Using the definitions of B; and A; in Peskin and Schroeder, these imply that
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While it was supposedly unnecessary, the running couplings were computed to bel,
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Notice that both § and X\ generally become weaker at large distances because for typical values
of g, A we see that 3, and 35 are both positive. However, if A << g then 8 will be negative and so A
will grow stronger at larger distances. Near small values of g and A the theory shows interesting interplay
between ¢ and A. Also interesting is the characteristic Landau pole in A suggesting that we should not
trust this theory at too large a scale.

Below is a graph of g versus —\ indicating the direction of Renormalization Group flow as the inter-
action distance grows larger.

FIGURE 1. Renormalization Group Flow as a funciton of scale. Arrow indicates flow in
the direction of larger distances. For this plot, M was taken to be 10%.
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Minimal Subtraction
Let us define the S-function as it appears in dimensional regularization as
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where it is understood that B(\) = lim._q 8(\, €). We notice that the bare coupling is given by Ay =
MeZ\(\, €)X where Z) is given by an expansion series in e,

Za(\€) = 1+Za”6—9).

We are to demonstrate the following.
a) Let us show that Z) satisfies the identity (3(), €) + eX\)Zy + B(Ae)AZ: = 0.

proof: Noting the general properties of differentiation from elementary analysis, we will
proceed by direct computation.
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b) Let us show that S(\, €) = —eX + B(X).

proof: We have demonstrated in part (a) above that (8(\,€) + e\)Zy + ﬁ()\e)/\% = 0.
Dividing this equation by Z, and rearranging terms and expanding in Zy, we obtain
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Now, we know that (A, €) must be regular in € as e — 0 and so we may expand it as
a (terminating)? power series 3(\, €) = By + Bie + Bo€® + - - - + Bne™. We notice that
B(A\) = Bo in this notation. Let us consider the limit of € — oc.

For any n > 0, we see that the order of the polynomial on the left hand side has degree
n whereas the polynomial on the left hand side has degree n — 1 because as ¢ — oo,
the equation becomes (§,€" = —ﬁnen)\%%}. But this is a contradiction. ——

Therefore, both the right and left hand sides must have degree less than or equal to O.
Furthermore, because the left hand side is B(\, €) + eA = By + B1€ + e\ must have
degree zero, we see that 31 = —e.

So, expanding (], €) as a power series of €, we obtain,

[ 800 = —ex+ B0
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2Professor Larsen does note believe this to be necessary. However, we have been unable to demonstrate the required
identity without assuming a terminating power series.
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c.i) Let us show that 3(\) = A L.

proof: By rewriting the identity obtained from part (a) above and expanding in Z) we see

that
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We see that because there is no term on the right hand side of order €, it must be that
B(X, €) + Aa; = 0 which implies that 3(\,e€) = —Aay. Furthermore, by equating the
coefficients of X, we have in general that 8(X,€)a, + Aani1 = —B(/\,e)/\d;;'. By
rearranging terms and using noticing the chain rule of differentiation, we see that
this implies that
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This fact will be important to the proof immediately below.
Now, by the result of part (b) above, we know that
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Equating the coefficients of terms of order % on the far left and right sides, we see that
da
B(N\ar = —6(>\,e)/\d—/\1.
Now, using our result from before that 3(\, ) = —Aay, we see directly that
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c.ii) Let us show that ﬁ()\)% = /\2%.

proof: By our result in part (b) above, we have that
BA) = (B(A€) +€A),
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Equating the coefficients of }V on both sides, we see that by using the identities shown
above,
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In the minimal subtraction scheme, we define the mass renormalization by m3 = m?2Z,,, where

Zm:1+zlé—i.
v=1

Similarly, we will define the associated S-function f,,(\) = m~,,(\) which is given by
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d.i) Let us show that v,,(\) = %%~

2
proof: Because m? is a constant, we know that dmy
we see that this implies
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We see that the coefficient of the €® term on the left hand side is 23,,(\) and on the
right hand side it is m)\%. Therefore, because these terms must be equal, we see
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d.ii) Let us prove that )\% = 29m (A)by, + B(N) L.
proof: Continuing our work from part (d.i) above, we have that
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2Bm(N) <1+ % +) =—m (B(\) —€)) <1(jzb/\1 4.
It must be that the coefficients of ei are equal on both sides. Therefore, we see that
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Rearranging terms, we see that
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APPENDIX

Calculation of the Running Couplings § and \

Let us now solve for the flow of the coupling constants g, \. We have in general that solutions
to the Callan-Symanzik equation will satisfy
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This is an ordinary differential equation. We see that
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The constant C'is found so that g(p = M) = 1.> This yields C = —1/2.
To find the flow of A\, however, it will be convenient to introduce a new variable n = \/g?. We must

then solve the equation
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This is again a simple ordinary differential equation. We see that this implies
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Note that from our work above, 167T2dlogp/M 167r2d ( g’gr ) = s—lgdg. Therefore,
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Solving this equation in terms of 7, we see that we have
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And so,
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As before, the constant term C is found by requiring that A(p = M) = 1. The constant is then

O — _4V/1345+149
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31t can be argued that this is a poor choice of C' because it requires the reference scale to be non-perturbative.
Nevertheless, it is not a free parameter.



